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Artificial velocity-space instabilities excited by the discreteness of 
particles are a nuisance in plasma particle simulations. The suppression 
of these instabilities is considered for the case of a uniformly 
magnetized electrostatic particle simulation using a combination of 
analytical and numerical techniques. It is found that, for a repre- 
sentative “rings-and-spokes” perpendicular velocity distribution 
modeling a Maxwellian, the instabilities are suppressed if the number of 
perpendicular velocity “rings” exceeds i(w,/o<)*, and the number of 
gyrophase “spokes” exceeds 8k,,,v,,,/o,.. 0 I ssz Academic press. I~C 

I. INTRODUCTION 

There are a number of advantages in using particles in 
computer simulation of plasmas [I]. Among these are the 
capability of studying kinetic effects in plasmas, plasmas 
which are far from Maxwellian, plasma sheaths, resonant 
effects in velocity space, velocity-space instabilities, and 
wave-breaking following the formation of a shock. 

With these advantages come some difficulties. The 
representation of a plasma as a collection of particles means 
that noise will in general be present from the particle dis- 
creteness. This noise can be much larger than that which is 
present in a real plasma, because typically no more than 
a few million particles can be followed by present-day 
computers, compared to particle counts several orders of 
magnitude higher in a typical real plasma. 

Additionally, the few million particles of a particle 
simulation can only represent a desired continuous phase 
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space distribution function up to a certain accuracy. Since 
there are a number of plasma instabilities which are sen- 
sitive to the details of the distribution, it is often the case 
that the particle representation of a desired distribution in a 
computer model is unstable while the desired distribution 
itself is not. 

These two difficulties are generally dealt with by choosing 
the particle representation of the desired initial distribution 
in a judicious manner. There are two philosophies involved 
in this choice. First, if the particles are initialized or 
“loaded” in an organized manner, then the noise can be 
reduced to a minimum [2]. As an extreme example of this 
philosophy, one could, for example, pick a small number of 
velocities, chosen so as to model in rough fashion the 
desired velocity distribution, and then load a large number 
of particles, uniformly spaced in real space, for each of these 
velocities. If the number of particles for each velocity is a 
multiple of the number of simulation grid-points, the charge 
associated with each velocity will be uniformly distributed 
to the grid, and there will be no associated noise. In the 
absence of initial electric or magnetic fields, each of the 
velocity subpopulations or velocity “beams” will just free- 
stream, and no noise would ever appear. 

Unfortunately, these “multibeam” distributions tend to 
be unstable [3,4], even though the corresponding desired 
velocity distribution may be stable. Any initial perturba- 
tion, either user-supplied or from roundoff, will grow to 
large amplitude. More importantly, the presence of this 
instability can mask or interfere with the “real” behavior of 
the distribution. Also, it is generally the case that so many 
particles are required to uniformly load each beam that only 
a relatively small number of beams can be used. This results 
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in only a fair representation of the desired distribution 
function. 

The other philosophy is to load the particles in some 
random fashion using a probability distribution identical 
to the desired distribution function. The resulting particle 
distribution function is a reasonable representation of the 
desired distribution function and is typically stable in the 
absence of discernible beams. The resulting simulation is, 
however, often very noisy. 

velocity-space particle discreteness simply through the form 
of the zero-order velocity distribution function. For the 
plane perpendicular to a static uniform magnetic field in the 
presence of electrostatic fields, the Vlasov equation is 

a.f ,+".v,f+4 =Q,q5 (1) m ( c > 
.-+I, 

1 

It is not necessary to employ one of these philosophies to 
the exclusion of the other. For example, one can load par- 
ticles in an organized manner which “looks” random. This 
type of method, often called a “quiet-start” method, has 
been quite successful. Such a method might, for example, 
consist of loading particles uniformly in space, but then 
scrambling the velocities using a bit-reversed choice of 
velocity indices [S, 61. This kind of method permits the 
loading of many different velocities, so that the desired 
distribution is well represented, while still reducing noise. 
Another approach is to use beamlike structures, but choose 
the number of beams, their placement in velocity, and the 
associated number of particles with both linear stability and 
noise minimization in mind. 

where f(xL, v, t) is the distribution function of the species 
whose discreteness effects we are considering, #(xL, t) is the 
electrostatic potential, q and m are the (signed) charge and 
mass of the species, and B, = B,P is the uniform magnetic 
field. Note that this equation holds equally well for jfduz in 
place off, a substitution we make without loss of generality 
for the remainder of this paper. We shall consider the effect 
of discreteness in velocity space due to one species only. 
Poisson’s equation is then 

Most of these approaches require something be known 
about how well each dimension of velocity space should be 
filled to guarantee linear stability. Work along these lines 
has been conducted by Gitomer and Adam [3] for the 
unmagnetized electrostatic case. In this paper, we examine 
another common and important situation-that of the 
velocity space perpendicular to a uniform magnetic field in 
an electrostatic simulation. We address the following 
questions: How well must perpendicular velocity space be 
filled to guarantee that no artificial linear instabilities 
result? How well must gyrophase space be represented? 

with the normalization jfdv, = n(xl, t)/n,,, where n(xl, t) 
and n, are the number density and mean number density, 
respectively. The quantity pb = -qqn, represents a fixed, 
neutralizing background charge. Only one species is 
employed in our calculations. We expect that the other 
species making up the background charge, if represented as 
particles, would display properties qualitatively similar to 
those described here, and further, by their presence, would 
not qualitatively affect the properties discussed here. 

Our answers to these questions have appeared elsewhere 
without derivation [7]. In this paper, we present the details 
of the underlying calculation. The model used in our 
analysis is described in Section II. We then examine the 
perpendicular velocity instabilities (ring instabilities) for 
this model in Section III. The suppression of gyrophase 
instabilities (spoke instabilities) is considered in Section IV. 
Some sample simulations are shown in Section V. A 
summary of results is provided in Section VI. 

We take our zero-order distribution function to be of 
the form fO(vl, 8 -at), which is uniform in space and 
independent of the time t, apart from a trivial contribution 
from cyclotron gyro-rotation in velocity space. Here 8 = 
-tan-’ vY/v, is the gyrophase and Q c qB,lmc is the 
particle species cyclotron frequency. In what follows, we 
shall be considering linear perturbations about equilibrium 
systems characterized by zero-order distribution functions 
of this type. In particular, we will be making much use of 
“multi-ring” and “rings-and-spokes” distributions. Use 
of these distributions simplifies the analysis and leads 
to principles and properties which we can expect are 
applicable to more general distributions. 

II. THE MODEL 

Our primary interest here is the effect of various per- III. RING INSTABILITIES 

pendicular velocity-space particle distributions on linear 
stability. For this reason, we will not include finite timestep We first consider a zero-order gyrophase-independent 

or spatial arid effects, nor will we consider the effects of par- 
distribution function of the form 

title discreteness in real space. These simplifications allow 
us to use the continuous forms of the Vlasov equation 
and Poisson’s equation and to take into account the 

(3) 
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where the a,% and u L .‘s are constants with C, a, = 1, and we 
defer consideration of the discreteness of the distribution 
function in gyrophase to the next section. The dispersion 
relation for the case of a uniformly magnetized uniform 
plasma in the electrostatic approximation is well known 
when the zero-order distribution depends only on uI [S]. 
For the N-velocity-ring distribution Eq. (3), we obtain the 
dispersion relation 

N 202. 
O=D(k,o)-l- 1-2 

.y=l kr, Q2 

x f J,W,)CJ,- lWs) -J,+ ,(kr,)l 
I= I 

12sz2 
X & - pQ2’ (4) 

where k is the perpendicular wavenumber, w  is the wave 
frequency, ops ’ = 4nq2a,n,/m is the plasma frequency, 
r,= u,,/s2 is the gyroradius corresponding to the sth 
velocity ring, and the J,‘s are Bessel functions of the first 
kind of order 1. The modes resulting from this dispersion 
relation bear a similarity to Dory-Guest-Harris modes [9], 
which occur for a single, finite-temperature velocity ring. 

A simple root-finder was devised to determine the roots 
to Eq. (4). The root-finder uses the Newton-Raphson 
method on the dispersion relation (4) and its derivative with 
respect to 02. No attempt is made to follow roots as k 
is incremented; instead, guesses are made for each value 
of k. These guesses are spaced two per each interval of 
[nQ, (n + l)Q] in the pattern, 

co= .‘., (n+E)SZ, (n+ 1 -&)&I, 

(n + 1 + &)Q, (n + 2 - E)Q, . ..) (5) 

where n is an integer and E is a parameter chosen much less 
than one. This method is employed because of the existence 
of poles in Eq. (4) at o = nQ. The algorithm has been very 
successful, not only in plotting real roots versus k, but 
also in determining thresholds for the onset of instability. 
The latter is characterized by the meeting and subsequent 
disappearance of two roots as k is varied; see Fig. 1. 

We examined the stability of a distribution which 
employed “equally weighted rings” i.e., rings with equal 
values of a, with values of ulS as shown in Fig. 2a. The 
values of ulS are obtained from the condition 

while, of course, a, = l/N for all S. Note that this definition 
automatically determines the uLmax = u1 N. For N= 32, 

I 1 

FIG. 1. Typical root-solver-generated dispersion diagrams: (a) shows 
the solver’s capability at large values of w and k, for wji/s23 = 220; 
(b) shows the onset of instability when o$,/Qf is increased to 240. 

uLmax = 2.64u,,; for N = 64, uLmax = 2.89u,,. Another 
possibility, that of equally spaced rings (in II,), is defined by 
the assignment u is=~~ImaxJN, where now uImax may be 
freely chosen. The weights would then be defined according 
to 

as shown in Fig. 2b. The equally spaced rings case was not 
studied here. 

Unstable roots for a fixed value of N, the number of 
velocity rings, were found by increasing the value of 
ob/Q2 EC, c&/Q’ until the phenomenon illustrated in 
Fig. 1, characteristic of the onset of instability, was observed 
somewhere in o-k space. Plots covering large regions of o-k 
space were made first to obtain an estimate of the critical 
value of o~/Q2. Then, regions where the characteristic 
behavior was observed were analyzed more carefully, using 
small increments in the value of 0@2~, in order to obtain 
a more accurate determination of the critical value. 

Perhaps the most significant result of this search is shown 
in Fig. 3. We find that a velocity distribution with a given 
value of o~/Q2 is stable if the number of (equally weighted) 
rings representing the distribution, N, exceeds ~(w@~). 

We also find that, as o,,/Q is increased for fixed N, the 
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FIG. 2. Weights, a,, and projected velocity distributions f(u,) for a velocity ring representation of a Maxwellian velocity distribution in uI for 
(a) equally weighted, unequally spaced rings in perpendicular velocity space, and (b) unequally weighted, equally spaced rings. 
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FIG. 3. The wi/D* stability boundary vs. N for Maxwellian- 
representative distributions containing N equally weighted rings. 
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FIG. 4. The distribution composed of N equally weighted rings first 
becomes unstable at the values of o and kl shown labeled by (N, c@*), 
where the value of wi/Q2 is stability threshold displayed in Fig. 3. 
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first mode to go unstable is characterized by increasingly 
large values of k and o, as illustrated in Fig. 4. We observe 
that the critical value of k roughly satisfies kv,/Q z 2N 
while, approximately, o/Q z 3N/4. 

Thus, we can expect that, without considering other 
factors, if the number of velocity rings is chosen a safe 
margin above $(wi/Q*), the resulting distribution will have 
stability properties acceptable for the purposes of particle 
simulation. The short wavelength and high frequency 
associated with the most unstable mode for large N may in 
fact allow some relaxation in this stability criterion; after all, 
the simulation will not be able to follow frequencies higher 
than n/At or wavenumbers larger than n/Ax, At and Ax 
being the timestep and grid spacing, respectively. Some 
evidence for this less stringent stability criterion has in fact 
been seen in simulations [lo]. Definitive statements to this 
effect require an examination of alias and resonance effects 
associated with the grid and finite timestep [ 111, and thus 
are beyond the scope of the present study. 

IV. SPOKE INSTABILITIES 

We now consider how the above results are modified due 
to the particle discreteness in gyrophase space. Two deriva- 
tions were performed for this purpose leading to the same 
dispersion relation. We present here the simpler of these two 
derivations, using results from the more involved derivation 
only to motivate our initial assumptions. The simpler 
derivation is based on a method employing action-angle 
variables as described in Aamodt et al. [ 123. The single- 
particle Hamiltonian for a monochromatic electrostatic 
plane wave takes the form [ 12, 131 

H=Ho+H, 

=M+qfP,lm 

= pi + (q/m) &k-r 1 $,grQt-iwt 

, 

= pi2 -t (q/m) eikX 1 J,(kr,) e”” 

where rR = vI /Q is the gyroradius and p, 0, X, and Y are the 
canonical set of variables expressible in terms of the usual 
Cartesian phase space coordinates as 

v2+v2 v; psy--, (7) 

8 = - arctan 2, 
x 

(8) f(t)-f(0)=Jla dt’ {H,f}, 

X=x+$ 

YE,-%, 

with the ambiguity in sign in Eq. (8) determined by 
v, = v I cos 8, vy = - v I sin 8. The wave is assumed to be 
propagating in the k, = kP direction, which has been taken 
parallel to S without loss of generality. 

The form of the mode perturbation expressed in Eq. (6) 
indicates that the harmonics of the cycloron frequency 
will be coupled. A parallel, but more complicated deriva- 
tion, described briefly in Appendix A, provides additional 
insight. The coupling occurs in the first place because the 
zero-order distribution function now depends on 8 and thus 
loses the symmetry in gyrophase assumed in the previous 
section. The coupling is, however, limited to frequencies 
which are integer multiples of the cyclotron frequency away, 
by the persistence of symmetry with respect to translation 
in time by the cyclotron period 27r/Q, i.e., f&, 8, t) = 
f&, 8, t + 27$2). The validity of the assumption is also 
supported a posteriori from the consistency of the derived 
dispersion relation. 

Canonical transformation of Eq. (6) to the new variables 
(0, ,L?) using the generating function F2 = (tI - Qt)ji yields 
B = aF&i = e - Qt, p = p = aFJa9, and 

R=H+aF,lat=qdlm=R, 

= (q/m) eikX 1 J,(kr,) eid 
I 

Note the explicit time dependence of 0 on t. The equilibria 
we are considering are thus of the form f0 = fO(pL, 8). These 
are valid equilibria since both p and 0 are constants of the 
unperturbed motion. In fact, to zero order in the perturba- 
tion q&m, all of the independent variables are dynamical 
invariants: 

$ (0, ,ii, x, Y)(O) = 0. 

In particular, 0 is the gyrophase measured relative to a 
co-rotating reference angle and, hence, is constant along an 
equilibrium trajectory. 

The Vlasov equation may be written in terms of the 
Hamiltonian Has 

(13) 



232 OTANI ET AL. 

where { } is the Poisson bracket. When linearized with 
respect to Hi/H,, in the new canonical coordinates, this 
equation becomes 

When Eq. ( 11) is substituted, Eq. (14) yields 

fl = CJLlrseikX exp[ - i(0 - r’Q) t] 
r’ 

xexp(ikX+ilB+i[(r+1)~--It}. (15) 

Use of Poisson’s equation -V2~ = 4?rqn, j D dp d0 fi 
enables us to obtain a dispersion relation 

k2$, = w; C j 52 d/i do f. 
I, I’ 

X 
/J,(aJ,,/ap) + l’J,.(aJ,/ap) 

o-(r+l’)Q 

The determinant of the implied (infinite) matrix, 
Hermitian when w  is real, serves as the dispersion function 
for the general casefo =f& 8). Generalization of Eq. (16) 
to more species is straightforward, requiring simply that the 
right-hand side be summed over species. As expected, the 
eigenmodes for this system do not in general have the simple 
time dependence e-‘“‘, but instead are composed of a 
mixture of frequencies Q apart. This is a consequence of the 
time-dependent equilibrium f&, 0, t) and expresses the 
coupling between modes that is consistent with the corre- 
sponding assumption in Eq. (6). As a check, we find that the 
well-known gyrophase-independent dispersion relation 

is recovered when 3f,/a0 = 0. Also, Eq. (16) is found to 
be consistent with the reality condition c$,*(k, co) = 
qL,( -k, -CD*). 

We now choose the equilibrium distribution function as 

fo=M-l 2 ~(e-~m)“MP). (18) 
m=l 

This distribution function may be said to be composed of M 

angular “spokes” and is thus the “rings-and-spokes” 
distribution shown in Fig. 5 when&(p) is given by the sum 
of Dirac delta functions f&) = 52-l C, a,&~ - CL,). If the 
angles 8, are evenly spaced, 19, = 2nm/M, then 

M-‘~exp[i(Z--1’)8,] =SIS,,+jM, 
m 

(19) 

where cS,,~, is the Kronecker delta and j = 0, f 1, f 2, . . . . 
Hence, 

X 
la(JlJ,+jM)/aP +jMJl+ jM(aJ&) 

o-(r+Z+jM)Q 

x LjM. 

The presence of M evenly-spaced spokes shortens the 
temporal period of repetition to 2n/Ms2, accounting for the 
alias coupling of modes separated in frequency by Mf2 
rather than 52. 

The Bessel functions in Eq. (20) have the small-argument 
limiting form J,(kr) - (kr/2)‘/1! and IJ,(kr)l q 1 for 
lkrl < l/2. Thus, only terms such that ljM( < 2k(rg)max con- 
tribute in Eq. (20), since J,(kr,) goes to zero very rapidly 
once 111 is appreciably larger than kr,. In particular, if 
M>Wr,Lx~ decoupling of the various temporal modes 
occurs so that only the diagonal terms (i.e., those terms 
coupling 4, to itself) in Eq. (20) contribute, and the 
gyrophase-independent dispersion relations Eqs. (4) and 
(17) are then recovered. In other words, the rings-and- 
spokes distribution behaves essentially like the corre- 
sponding gyrophase-independent distribution when the 
wavelength is longer than the spacing of M particles 
arranged on a circle of radius (rg)max. 

rings 
spokes 

FIG. 5. Location of particles in perpendicular velocity space in a 
rings-and-spokes distribution. Particles are situated at the intersections 
of circles concentric about vI = 0 (rings) and uniformly spaced lines 
extending radially from vI = 0 (spokes). 
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In a typical simulation with a thermal velocity distribu- 
tion, max(u,) < 4~,~. Hence, the argument of the Bessel 
functions in Eq. (20) satisfies the inequality kr, < 
4k,,,~,~/Q. The coupling of 7, to $r+jM will be negligible, 
with some margin of safety, if 

(21) 

The analysis of Section III may then be applied. For N 
equally weighted rings, stability can be achieved for 

(22) 

Thus, a quiet-start simulation ought to be stable to 
magnetized multi-ring instabilities if the inequalities in 
Eqs. (21) and (22) are both satisfied. 

V. SIMULATION STUDY 

A small number of simulation runs were performed to test 
our theory. Rings-and-spokes distributions representative 
of a Maxwellian (and therefore physically stable) plasma 
were employed. In these runs, the distribution function was 
replicated eight times across the length of the system to 
quiet the first few spatial modes. The first simulation, shown 
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FIG. 6. Simulation of a Maxwellian plasma with a separable rings- 
and-spokes perpendicular velocity distribution function for electrostatic 
flute modes k B, = 0. The parameters were wi/Q* = 200, N = 299, and 
M = 32 for six operable values ofk: ku,,,/Q = 1.25,2.50,3.75,5.00, and 6.25: 
(a) Perpendicular velocity distribution function. Apparent structure at low 
velocities is due to the particular sampling of 3000 particles out the 76,544 
total. (b) Power spectrum I&k,w)l’ as a function of the frequency w. 
(c) The corresponding field energy E*(k)/Sn, integrated over w as a 
function of time at for kv,# = 6.25. 

in Fig. 6, employed the parameters 0$2* = 200 and 
N= 299 which, according to the analysis of Section III, is 
stable to ring instabilities. However, with the thermal 
velocity chosen such that 8k max v,,/Q = 50, i.e., greater than 
the number of spokes, M = 32, we find that the velocities in 
the tail of the distribution 2.5v,, d vL d 30,~ give arguments 
falling near the maxima of J, for 14 6 (11 < 18. Diagnostic 
analysis of the simulation revealed the signature of the 
cyclotron alias coupling as lower hybrid normal modes 
near Re(o) = f 1452 coupled to modes at Re(o) = 
f (14 - 32)Q = f 1852; these modes all grew with rate 
Im(o) =0.1X& with the ratios of the coupling modes 
being equal as expected, Iq5(k, 14.Q)12/1d(k, - 18Q)12= 
Mk, - 14Q)12Mk, lSQ)l*. 

The temporal modes observed to be participating in the 
instability are consistent with the theory. The product of 
Bessel functions appearing Eq. (20), J,J[+ jM, produces 
significant coupling between modes first for j = + 1 and for 
III = II+ MI z M/2. Strongest coupling should then be 
obtained when the denominator in Eq (20) is smallest. This 
occurs when o z MQ/2, which is 1652 for the present case, 
consistent with the simulations. 

We next doubled M to M= 64, so that both Eqs. (21) and 
(22) were satisfied. Figure 7 shows that modes near the 
lower hybrid frequencies Re(o) = + 14Q were excited and 
may have been very weakly unstable. However, if there was 
instability, saturation occurred very quickly and at a very 
small amplitude E:/8nn,T= lo-“, which was not much 
above the initial amplitude. In fact, the fluctuation level in 
the normal modes was so small that the discrete particle 

-10 0 10 0 25 

"x WC 

9x10.9 
(b) 

/ 

FIG. 7. Effectively stable rings-and-spokes simulation with the same 
plasma parameters as in Fig. 6 and with N = 149, M = 64, and 76,288 total 
particles: (a) Sampling of perpendicular velocity distribution function. 
(b) Power spectrum I&k, 0)1* as a function of frequency o. (c) E*(k)/Sn 
as a function of time RI for ku&2 = 6.25. 
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ballistic noise was visible in the power spectrum (Fig. 7b). since expressions forfi , E, ,d, and pi are obtained and used 
For our purposes, this simulation corresponded to a stable explicitly as intermediate results. A summary of this deriva- 
quiet start. tion follows. 

From the linearized Vlasov equation, 

VI. SUMMARY 

A root solver has been used to determine how many 
rings, equally weighted in perpendicular velocity space, are 
required for the stability of a distribution representative of 
a Maxwellian distribution in an electrostatic, uniformly 
magnetized particle simulation. We find that the number of 
rings should exceed ~(w,/Q)~ for stability. This determina- 
tion assumes that the rings were of uniform density in 
gyrophase space. 

dfl afo z+-$p .E,, - 
+ 

1 afo +--&Ei~v+-=O, 
2~ ae 

(~41) 

we obtain 

It was next determined analytically how many particles, 
uniformly distributed in gyrophase space, are required to 
produce a velocity ring distribution which behaves as a 
collection of rings of uniform gyrophase density. Dispersion 
functions for the general distribution f&, 0), the discrete- 
particle distribution, and the rings-and-spokes distribution 
were derived and found to be consistent with well-known 
gyrophase-independent dispersion relations. We find that 
the eigenmodes are, in general, not simple sinusoidal func- 
tions of time but, instead, are a mixture of frequencies. 
However, in the case of a Maxwellian rings-and-spokes dis- 
tribution, we find that the different frequencies decouple 
when the number of particles per ring (i.e., number of 
spokes) is larger than 8k max v,,, JSZ, in which case the disper- 
sion relation reduces to its gyrophase-independent counter- 
part. These results have been supported by simulations. 

where E, = -Vq5, E 1’ = E,, f iEly, and, for brevity, z = 
(p, 8, X, Y). The perturbed electric field may be expressed as 
a function of the zero-order invariants z as 

E,(z, o) = - j s eikL.x 

xc J,(k,r,) ei’(‘+Or) 

The conclusion to be drawn is thus simple. In an elec- 
trostatic particle simulation which is uniformly magnetized 
perpendicular to the simulation plane, if the number of rings 
exceeds f(o,/Q)* and the number of spokes in each ring 
exceeds 8k max~th JO in a rings-and-spokes representation 
of a Maxwellian perpendicular velocity distribution, 
velocity-space stability is guaranteed. These criteria should 
also serve as reasonable guidelines if the distribution to be 
used is either not of the rings-and-spokes variety, or is not 
Maxwellian. If, in addition, the usual precautions are taken 
with regard to finite timestep and grid effects, it should be 
possible to perform quiet-start simulations that are stable 
to artificial magnetized velocity-space instabilities. Such 
guidelines have in fact been followed with success, as, for 
example, in research conducted by Cohen, Maron, and 
Smith [ 131. 

xik,d(k,,w+ZQ), (A3) 

whereX=(X,Y),k,=lk,Icosa,andk,=lk,)sincr.The 
perturbed charge density may be expressed in terms off, as 

pi(k;,w)=yn+&“’ 

x dz e-ikL’xL(Z~‘)fi(z, t). 
s (A4) 

where dz = D dXdYdp do, x,(z, t) and v,(z, t) are the 
Cartesian spatial and velocity coordinates as functions 
of z and t, and fi(z, t)= fi(x,(z, t), vI(z, t), t). When this 
expression is combined with Poisson’s equation, we obtain 

xc J,(k,r,) c’@+~) 

APPENDIX A: ALTERNATIVE DERIVATION 

The dispersion relations presented in Section IV may also 
be derived without the use of Hamiltonian theory. The 
calculation is more complicated, but perhaps more physical, 

x fi(Z, o-m). (A3 

Each of Eqs. (A2), (A3), and (A5) involves the coupling of 
frequencies which are multiples of the cyclotron frequency 
apart, consistent with the Hamiltonian given in Eq. (6). 
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When Eqs. (A2) and (A3) are substituted into Eq. (A5) with 
k, = kS, the result is Eq. (16). The derivation of these equa- 
tions as summarized above thus serves as a second deriva- 
tion, confirming the results of the calculation presented in 
Section IV. 
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